,

AdductHunter

Derek Long, Liam Eade, Katharina Dost, Samuel M Meier-Menches, David C Goldstone, Matthew P Sullivan, Christian Hartinger, Jörg Wicker, Katerina Taskova: AdductHunter: Identifying Protein-Metal Complex Adducts in Mass Spectra. In: Journal of Cheminformatics, vol. 16, iss. 1, 2024, ISSN: 1758-2946.

Abstract

Mass spectrometry (MS) is an analytical technique for molecule identification that can be used for investigating protein-metal complex interactions. Once the MS data is collected, the mass spectra are usually interpreted manually to identify the adducts formed as a result of the interactions between proteins and metal-based species. However, with increasing resolution, dataset size, and species complexity, the time required to identify adducts and the error-prone nature of manual assignment have become limiting factors in MS analysis. AdductHunter is a open-source web-based analysis tool that automates the peak identification process using constraint integer optimization to find feasible combinations of protein and fragments, and dynamic time warping to calculate the dissimilarity between the theoretical isotope pattern of a species and its experimental isotope peak distribution. Empirical evaluation on a collection of 22 unique MS datasetsshows fast and accurate identification of protein-metal complex adducts in deconvoluted mass spectra.

BibTeX (Download)

@article{Long2023adducthunter,
title = {AdductHunter: Identifying Protein-Metal Complex Adducts in Mass Spectra},
author = {Derek Long and Liam Eade and Katharina Dost and Samuel M Meier-Menches and David C Goldstone and Matthew P Sullivan and Christian Hartinger and J\"{o}rg Wicker and Katerina Taskova},
url = {https://adducthunter.wickerlab.org
https://doi.org/10.21203/rs.3.rs-3322854/v1},
doi = {10.1186/s13321-023-00797-7},
issn = {1758-2946},
year  = {2024},
date = {2024-02-06},
urldate = {2024-02-06},
journal = {Journal of Cheminformatics},
volume = {16},
issue = {1},
abstract = {Mass spectrometry (MS) is an analytical technique for molecule identification that can be used for investigating protein-metal complex interactions. Once the MS data is collected, the mass spectra are usually interpreted manually to identify the adducts formed as a result of the interactions between proteins and metal-based species. However, with increasing resolution, dataset size, and species complexity, the time required to identify adducts and the error-prone nature of manual assignment have become limiting factors in MS analysis. AdductHunter is a open-source web-based analysis tool that  automates the peak identification process using constraint integer optimization to find feasible combinations of protein and fragments, and dynamic time warping to calculate the dissimilarity between the theoretical isotope pattern of a species and its experimental isotope peak distribution. Empirical evaluation on a collection of 22 unique MS datasetsshows fast and accurate identification of protein-metal complex adducts in deconvoluted mass spectra.},
keywords = {cheminformatics, computational sustainability, data mining, dynamic time warping, machine learning, mass spectrometry},
pubstate = {published},
tppubtype = {article}
}